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Interactive dynamics of two copropagating laser beams in underdense plasmas
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The interaction of two copropagating laser beams with crossed polarization in the underdense plasmas has
been investigated analytically with the variational approach and numerically. The coupled envelope equations
of the two beams include both the relativistic mass correction and the ponderomotive force effect. It is found
that the relativistic effect always plays the role of beam attraction, while the ponderomotive force can play both
the beam attraction and beam repulsion, depending upon the beam diameters and their transverse separation. In
certain conditions, the two beam centers oscillate transversely around a propagation axis. In this case, the
ponderomotive effect can lead to a higher oscillation frequency than that accounting for the relativistic effect
only. The interaction of two beams decreases the threshold power for self-focusing of the single beam. A strong
self-trapping beam can channel a weak one.
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Because of some nonlinear effects, a laser beam with highave observed spiraling of the two beams with crossed po-
enough power can modify the material refraction index. Thearization directions in particle-in-ce{PIC) simulations[7].
refraction index chang&N resembles the intensity profile of They also have studied this phenomenon analytically, where
the beam, forming an optical lens that focuses the beam. Thigieir coupled beam equations only include the effect of the
is the well-known self-focusing phenomenon. When the selfrelativistic mass correction. However, the plasma density
focusing exactly balances diffraction, the beam becomegodification due to the laser ponderomotive force, which has
self-trapping with a nearly constant or slightly oscillating a significant influence on the self-trapping of a laser beam
beam diameter. It is thus to form an optical spatial soliton[3], has been ignored.

[1]. The (2+1)D optical spatial solitons are unstable in the |n this paper, we study the interaction of copropagating
Kerr media, which is characterized WyN=n,l, wherel is  beams with coupled envelope equations including both the
the local intensity andh, is the nonlinear refraction index. relativistic mass correction and the ponderomotive force ef-
The laser beam suffers from catastrophic self-focusing anect. Using the variational methdd@,9], we obtain a set of
eventually breaks up. However, it is found that materialsordinary differential equations to describe the beam centers
with saturable nonlinearities are able to prevent catastrophiand diameters, etc. The result is compared with what is found
collapse[1]. The(2+1)D optical spatial solitons in the satu- by directly solving the coupled equations numerically.

rable media, such as photorefractive materials and plasmas, The coupled evolution equations for two laser beams with
have been investigated theoretically and experimentally. Laerossed polarization directions in underdense plasmas can be
ser power for forming the optical spatial soliton ranges fromwritten as[3,10Q]

only uW in the photorefractive materigR] to TW in the

plasmas[3]. Recently, there has been much interest in the dd, n

interaction between two optical spatial solitons, which are 2'&_7' +Via,=—ap (1)
either parallel to each other or crossed at some angles. This Y

kind of interaction exhibits many striking features, such a

attraction, fusion[4], repulsion, fission[5], and spiraling S\Nhereal anda, are the slowly varying vector potentials of

6 the two beams normalized bywc/e, respectively, the rela-
[6.7. . . tivistic factor y=\1+(|a;]?+|ay/?)/2, and the densityn
In plasmas, the nonlinear effects responsible for self- 2 ) . .
=max0,1+V y) addressing the ponderomotive expulsion

focusing are relativistic electron mass correction and thef lectron density f the hiah-intensi . hich i
plasma density modification due to the laser ponderomotivd' €'€Clron ensity from the high-intensity regions, which is

effect. The effective refraction index in plasma N&=[1 normalized by the unperturbed plasma densigy Here 7
: . —_— =w’t/ w and V2 = #/ 9x?+ 21 dy? with transverse coordinate
-n/(yny]¥?, where y is the relativistic factor of electron P L

motion, andn andn; are the electron density and the plasmax anply ?ormah/zeg 1b ﬁ/ (l"ﬁ'VAzt the ;’i eaklzy relsa tgnittlct'ap-
critical density, respectively. The combined effect of the relgProximation, niy= 4(. (2] .|a2| )- Su stiuting
tivistic mass correction and the density modification leads tdﬂy into Eq. (1), we obtain the following coupled nonlinear

a self-focusing lens, wher&aN<1. The critical laser power €duations:

for relativistic self-focusing in plasmas is (k/ a)p)zGW [3],

wherew is the light frequency and)p=(4wne2/m91/? is the 2 98 V2a, -a, + lal(l ~V2)(Jay?+]al?) =0,
electron plasma frequency. Recently, we have investigated aT 4

the interaction between two copropagating laser beams with

the same polarization directions in underdense plasmas, and Ja 1

found that two beams can merge into one beam or splitinto ;222 , V2a,-a,+ ~ay(1-V2)(ja2+|a)?) =0, (2)
three beams under different circumstan¢8k Ren et al. ar 4
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where termay o(|ay?+|ay?) and termay V2 (|ay>+|ay/?)  using the variation methofV]. First, we need to find a La-

represent the relativistic mass correction and the ponderom@rangian density’, where the Euler-Lagrange equations can

tive force effect, respectively. reproduce Eq(2) by minimizing the action/”, L£drdxdy.
Approximate solutions of Eq(2) can be obtained by Such a Lagrangian density is

[ oa .da 1 1 .1 A
,/U‘:Jl:212[|(aj(7—7L —q—ﬁ) +ay)? - §|aj|4+ (1 +Z|aj|2>vj_aj Vot §|aj|2(ajviaj +q Viaj):| + Ly, 3

wherea; is the complex conjugate anth,=~1/4(|ay|?|a,|?+V ,|ay|?-V , [a,|?). We use the following Gaussian trial functions:

a; = ag; exp(— i ¢y exp{— i[Kyj(X = Xg;) + Kyj(y = Yep Trexpl[ (x = Xg)? + (y = Y¢) 21 (1/2R; — 1/\/\/,-2)}

as in Ref[7], where the amplitudey;, phases;, beam centefX.;,Y,;), perpendicular momentufk,;,k,;), radius of curvature
R;, and the spot siz&/; are all real and are functions efonly. Substituting the trial functions into E(8) and integrating the
Lagrangian density in the xy plane leads to a reduced Lagrangian density,

2 e o
= —f de Ldy
™ —00 —00
(1_R'T)

1 1 1
= 2 | ag Wil 26— kgXejr = Ky Yej) + 1+ K+ kijl + 285, = g — —agWf + Sag Wi ——""
i 4797 16 2 R
_ aglaéz\l\li\/\/% - 2d? ) l 2 4 _ _ — -
W2+ W2 ex W2+ W2/ | 4 + W2 + W2 + W2+ V\/%[(ax Xe)(ax = X)) + (ay = Ye) (ay = Y| (4)

where aX=(XC1M€+X02M)/(M+M€), aYz(Ycl\N%'*'YcZW%)/(W%"'V\é)i andd=\'/(Xcl_XCZ)z"'(Ycl_Ycz)z is the distance be-
tween the centers of the two beams. One can find the evolution equations of the beam parameters by Euler-Lagrange equations
for the reduced Lagrangian density oL /38— (d/d7) L/ 9B+ (d?/d7®) dL/9B=0, whereg is any variational parameter for the
laser beams.
Varying ¢; leads to the power conservatid(‘aéj\/\/jz)/drzo. VaryingR;, one obtaindV;/R;=dW,/dr. By varying W, the
equations for the evolution of each beam spot size are given as

ﬂvi+i<ﬂ_1)+_PL: P,P, Mex - 242 )(_1+ 202 >+ 8P,P, Mex —2d2>
d7 T WPL32 LW 2 e e P T IWE WL T WA W) (W WGP T W W

d2
X{(‘ 1+ m)[l + 2ax = Xep) (ax = Xe2)+ 2(ey = Yer) (ay = Yeo) ]

+[(2ax = X = X (ax + X+ (2ay = Yo — Yeo) (ay + chj]} , 5

where

— J1j=2

=2j=1.
The left-hand side of Eq5) determines the evolution of each beam itself due to the relativistic effect, beam diffraction, and
the ponderomotive force. The right-hand side of &j.shows the effect of the beam interaction through the relativistic effect
and the ponderomotive force. From E§), neglecting the right-hand side, one obtains that the normalized threshold power of
relativistic self-focusing for individual beams is reached wige P.=32. On the other hand, let us consider the propagation
of a weak beam two in the background of another powerful beam oneRyiP; and P,<32. If the two beams propagate
in a coaxis, so thad=0, X;j=Y¢;=0, andax=ay=0, then one finds that beam two can be guided without diffraction through
the relativistic effect if the power of the beam oRg=8(1+W2/W5)2, which can be less than 32 providéd, <W.

The motion of the beam centroids can be obtained from vargkngk,;) and (X, Yc). By varying (K, k), it givesk;

+dX;;/dr=0 andk;+dY,;/dr=0. By varyingX.;, one obtains
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Pld2X°1 _ = 2P1Py(Xe1 — Xop) exp( - 2d? ){ 1 f

4
d? ~ (VV%+W§)2 VV§+W§ Z+ \Ni va+VV%_'_\N%[(OZX_Xcl)(aX_XcZ)+(aY_Yc1)(CVY_Y02)]}

2P,P
1P2 )[axmé—m@méxcz—méxcﬂ,

+ ex ~ o
W+ g AW+ W

d®Xeo _ 2P3P5(Xe1 ~ Xeo) - 20 ) 12 4 _ _ _ _
242 - (W2 +W2)2 ex W2+ W2 {4+W§+W§+ \N§+W§[(ax Xep)(ax = Xeo) + (ay = Yep) (ay Ycz)]}
2P exp( o )[ (W3 = WE) + WAX i — WEX 4] (6)
(VV%+VV§)3 Wi+VV§ ax\VV3 1 1c2 2c1l-

Similar equations hold in the direction. Equationi6) shows there is an upper limit on the beam distance based on the
that the beam centroids move like two particles with thestability analysis of the spiraling motiofi7], which is
mass proportional to their powers. Momentum conservationi < \2W. The physical meaning for the two limits is obvi-
P, X1+ PoXo=const can be straightly obtained from E6).  ously different. Under the same conditions as in Réf,. we

In a simplified case, assuming,;=P,=P and W;=W, find that the two beams rotate 180° after 55,21, which is

=W, the motion equations of the two beams become very close to 540»;1 observed in their PIC simulation. It is
PAX. —P “@\/3 1 & noted that, without including the ponderomotive effect, their
€= —AX, xp(—)(— +— - _) theory predicts a time of 586),;1 for a rotation of 180. It
d? W W2 N4 WP 2w? appears that due to the ponderomotive effect, the interaction

force between the two beams becomes stronger, leading to a
d?AY, -P -d?\(3 1 & higher spiraling frequency.
= —AY, ex , (1)

d2 WA W2 \a W ow? When two beams propagate parallel to each other, we
) cannot obtain the oscillating frequency as above and we

whereAX:=Xe =Xz andAY =Y~ Yep. As compared with — ghoyid solve Eq(6) or Eq. (7) numerically, since the dis-
what was obtained in Ref7], new terms on the right-hand (5,064 is variable. To account for more general cases, we

side of Eq.(7) appear because of the introduction of thesolve the coupled equatioi$)with the alternating-directing

pondezronlotlvez force effe_c'F n Eq2). In th_e factor (3/4 implicit (ADI) method[11]. A rectangular simulation box is
+1/W-—d*/2WF), the relativistic effect contributes only 1/4 used in thec-y plane. The input beams are launched parallel

) : >
?gg/zm% 'Fl)'ﬁinsd(ZLogrgggrse th];lotr(;ﬁe (r:glrz]attril\t)ilsjttii@e/f?etj/z}/waysto each other along the direction, and without initial per-
— . . ’>pendicular momenta. The transverse beam profiles are in
contributes to the beam attraction, while the ponderomotiv aussian focus with, =ay, exp[—[(x—xo-)2+y2]/\/\%-} In the
. | | [

I/(zarrcsee Cs?arp)grlzgot:%gt)\/lveeg:] %zaar:] itéracﬂo\g_yg\r;\l/z fg;;;rgns'whole simulation processes, the_ l(anergy Ce()tﬁzrof the two
which it plays the role of beam repulsion. Physically, thebeﬁmmS IS tracged, wheréd);=l 5/, xlai(x,y)[°dxdy and
ponderomotive repulsion is caused by the density increase fr=/==(x,y)[“dxdy. The latter represents the total laser
space between two beams, which leads to a low refractivEN€rayL6l- _
index there. The beam repulsion can overcome the relativis- Figure 1 illustrates the evolution of the two beams when
tic beam attraction whed > 2+3W2/2. 801=807=0.15, Woy=Wo,=20v2, and Xp;=-Xg,=12. Even

Meanwhile, Eq(7) can describe oscillating motion of two t_h°“9h the corresponding power for the single bear® is
copropagating beams parallel to each other and spiraling mg:18, much less thaR, the two beams are still trapped while
tion for two beams with initial perpendicular momenta or atPropagating. It suggests that the interaction of two beams
some crossing angles. For the spiraling motion, their transdecreases the threshold power for self-focusing of the single

verse separation distandecan be constant. One obtains the °€@m. This result can be deduced straight from @g.in
spiraling frequency which the intensity superposition of the two beams is equiva-

lent to increasing the power of the single beam. As Fig. 1
P -d?\/3 1 d? shows, the width of the two beams slowly changes from
Q= \/WGXP<W><Z + W2~ m) 20V2 to 10 inTe[0,2000. The beam amplitude increases to
0.39 in7=2000. The two beams attract, intersect, and sepa-
from Eq. (7). It is apparent that the spiraling solutions existrate, like a damped oscillation with an increasing oscillation
while d<y2+3W?/2. Beyond this upper limit, two beams frequency. Based on the assumption that both beams always
will depart from each other. This has been caused by théave constanW=20y2, from Eq.(6) one obtains that the
repulsive effect of the ponderomotive force. Without ac-two Gaussian beams have a nondamping and sinusoidal os-
counting for the ponderomotive force, it is also found thatcillation, as shown with the dashed line in Figicil The
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oscillatory period isT=2244. The dotted line in Fig.(&) much less thaP;=30.4. The large power means large mass
shows theory prediction without the ponderomotive effectwhen one takes an analogy between the laser beams and
and the corresponding oscillatory period Ts3098. The particles. It is expected that the beam with a small power will
theory agrees better with the simulation when including thewist along the beam with a large power. As shown in Fig. 3,
ponderomotive effect. As mentioned above, the additive ponbeam one is almost transversely immobile, but beam two
deromotive effect in Eq(2) led to stronger interaction and oscillates around beam one, with a period of about 200.
higher oscillatory frequency. Equatia6) also predicts that Meanwhile, beam two remains trapped without significant
oscillatory frequency will increase when the beam ampli-spreading, even though its power is much lower than the
tudes increase and their distance decreasesafs¥0.39,  self-focusing threshold. This is also due to the focusing ef-
W, »,=10, andd=4.5, the oscillatory period =207, which is  fect of beam one, as also discussed analytically following
consistent with the accelerated oscillation i Eq. (5).
€[1750,2000. It is found that the electron density is In summary, the interaction of two copropagating laser
slightly depressed, as shown in Figdy beams with crossed polarization in the underdense plasma
Figure 2 illustrates another beam evolution whag has been investigated analytically and numerically. It is
=ay,=0.5, Wp;=Wp,=6.35/2, and Xy;=—Xy,=5. The beam found analytically that the relativistic effect always plays the
width is almost constant in the whole process. The power ofole of beam attraction, while the ponderomotive force can
one beam is 20.2. It is clear to see that the two beams haygay the role of both the beam attraction and beam repulsion,
an oscillatory motion. The oscillation period of the energydepending upon the beam diameters and their center separa-
center is about 514 in Fig.(®. The electron density also tion. In certain conditions, the two beam centers oscillate
shows a periodic structure, as shown in Figd)2Our ana- transversely around a propagation axis. In this case, the pon-
lytical solution from Eq.(6) predicts an oscillation period of deromotive effect can lead to a higher oscillation frequency
T=349. This large difference is probably due to the weaklythan that accounting for the relativistic effect only. The in-
relativistic approximation and the ideal Gaussian beam usetkraction between two beams decreases the threshold power
in the above variational approach. for self-focusing of the single beam. A strong self-trapping
The above examples are the cases where the two bearhsam can channel a weak one. Our numerical simulations are
have the same powers. Figure 3 shows the interaction beonsistent with the theoretical analysis in an earlier stage of
tween the two beams with initial parameteeg;=1, ap,  the beam evolution. In the later stage, the analytical solutions
=0.2,Wy;=Wy,=3.9/2, Xy, =0, Xp,=—3. Note thaPP,=1.2is  depart from the numerical solutions because of a significant
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change of the beam profile found in the numerical simulaglected the longitudinal profiles of laser beams, our results
tions, which is difficult to take into account in the analytical should apply to the case when the durations of the laser
solutions. beams are much longer than a plasma oscillation period.

It is noted that certain kinetic effects in the plasma, such
as electron acceleration and corresponding quasistatic mag- This work was supported in part by the National Natural
netic generation, etcf12], have been neglected. Usually, Science Foundation of ChingGrants No. 10335020, No.
these effects are significant in plasmas with moderate densi0105014, and No. 100750);5he National High-Tech ICF
ties, but relatively weak in tenuous plasif8]. Thus the Committee in China, and the National Key Basic Research
results described above should apply preferably in tenuouSpecial Foundation (NKBRSFH under Grant No.
plasma such as,/n.<0.01. In addition, since we have ne- G1999075200.
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