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The interaction of two copropagating laser beams with crossed polarization in the underdense plasmas has
been investigated analytically with the variational approach and numerically. The coupled envelope equations
of the two beams include both the relativistic mass correction and the ponderomotive force effect. It is found
that the relativistic effect always plays the role of beam attraction, while the ponderomotive force can play both
the beam attraction and beam repulsion, depending upon the beam diameters and their transverse separation. In
certain conditions, the two beam centers oscillate transversely around a propagation axis. In this case, the
ponderomotive effect can lead to a higher oscillation frequency than that accounting for the relativistic effect
only. The interaction of two beams decreases the threshold power for self-focusing of the single beam. A strong
self-trapping beam can channel a weak one.
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Because of some nonlinear effects, a laser beam with high
enough power can modify the material refraction index. The
refraction index changeDN resembles the intensity profile of
the beam, forming an optical lens that focuses the beam. This
is the well-known self-focusing phenomenon. When the self-
focusing exactly balances diffraction, the beam becomes
self-trapping with a nearly constant or slightly oscillating
beam diameter. It is thus to form an optical spatial soliton
[1]. The s2+1dD optical spatial solitons are unstable in the
Kerr media, which is characterized byDN=n2I, where I is
the local intensity andn2 is the nonlinear refraction index.
The laser beam suffers from catastrophic self-focusing and
eventually breaks up. However, it is found that materials
with saturable nonlinearities are able to prevent catastrophic
collapse[1]. The s2+1dD optical spatial solitons in the satu-
rable media, such as photorefractive materials and plasmas,
have been investigated theoretically and experimentally. La-
ser power for forming the optical spatial soliton ranges from
only mW in the photorefractive material[2] to TW in the
plasmas[3]. Recently, there has been much interest in the
interaction between two optical spatial solitons, which are
either parallel to each other or crossed at some angles. This
kind of interaction exhibits many striking features, such as
attraction, fusion[4], repulsion, fission[5], and spiraling
[6,7].

In plasmas, the nonlinear effects responsible for self-
focusing are relativistic electron mass correction and the
plasma density modification due to the laser ponderomotive
effect. The effective refraction index in plasma isN=f1
−n/ sgncdg1/2, where g is the relativistic factor of electron
motion, andn andnc are the electron density and the plasma
critical density, respectively. The combined effect of the rela-
tivistic mass correction and the density modification leads to
a self-focusing lens, whereDNø1. The critical laser power
for relativistic self-focusing in plasmas is 17sv /vpd2GW [3],
wherev is the light frequency andvp=s4pne2/med1/2 is the
electron plasma frequency. Recently, we have investigated
the interaction between two copropagating laser beams with
the same polarization directions in underdense plasmas, and
found that two beams can merge into one beam or split into
three beams under different circumstances[8]. Ren et al.

have observed spiraling of the two beams with crossed po-
larization directions in particle-in-cell(PIC) simulations[7].
They also have studied this phenomenon analytically, where
their coupled beam equations only include the effect of the
relativistic mass correction. However, the plasma density
modification due to the laser ponderomotive force, which has
a significant influence on the self-trapping of a laser beam
[3], has been ignored.

In this paper, we study the interaction of copropagating
beams with coupled envelope equations including both the
relativistic mass correction and the ponderomotive force ef-
fect. Using the variational method[7,9], we obtain a set of
ordinary differential equations to describe the beam centers
and diameters, etc. The result is compared with what is found
by directly solving the coupled equations numerically.

The coupled evolution equations for two laser beams with
crossed polarization directions in underdense plasmas can be
written as[3,10]
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where term a1,2sua1u2+ ua2u2d and term a1,2¹'
2 sua1u2+ ua2u2d

represent the relativistic mass correction and the ponderomo-
tive force effect, respectively.

Approximate solutions of Eq.(2) can be obtained by

using the variation method[7]. First, we need to find a La-
grangian densityL, where the Euler-Lagrange equations can
reproduce Eq.(2) by minimizing the actione−`

` Ldtdxdy.
Such a Lagrangian density is
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whereaj
* is the complex conjugate andL12=−1/4sua1u2ua2u2+='ua1u2·='ua2u2d. We use the following Gaussian trial functions:

aj = a0j exps− if jdexph− ifkxjsx − Xcjd + kyjsy − Ycjdgjexphfsx − Xcjd2 + sy − Ycjd2gsi/2Rj − 1/Wj
2dj

as in Ref.[7], where the amplitudea0j, phasef j, beam centersXcj ,Ycjd, perpendicular momentumskxj ,kyjd, radius of curvature
Rj, and the spot sizeWj are all real and are functions oft only. Substituting the trial functions into Eq.(3) and integrating the
Lagrangian densityL in the xy plane leads to a reduced Lagrangian density,
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2d, andd=ÎsXc1−Xc2d2+sYc1−Yc2d2 is the distance be-
tween the centers of the two beams. One can find the evolution equations of the beam parameters by Euler-Lagrange equations

for the reduced Lagrangian densityL: ]L /]b−sd/dtd]L /]ḃ+sd2/dt2d]L /]b̈=0, whereb is any variational parameter for the
laser beams.

Varying f j leads to the power conservationdsa0j
2 Wj

2d /dt=0. VaryingRj, one obtainsWj /Rj =dWj /dt. By varying Wj, the
equations for the evolution of each beam spot size are given as
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where

j̄ = H 1,j = 2

2,j = 1.

The left-hand side of Eq.(5) determines the evolution of each beam itself due to the relativistic effect, beam diffraction, and
the ponderomotive force. The right-hand side of Eq.(5) shows the effect of the beam interaction through the relativistic effect
and the ponderomotive force. From Eq.(5), neglecting the right-hand side, one obtains that the normalized threshold power of
relativistic self-focusing for individual beams is reached whenPj ù Pc;32. On the other hand, let us consider the propagation
of a weak beam two in the background of another powerful beam one withP2! P1 andP2!32. If the two beams propagate
in a coaxis, so thatd=0, Xcj=Ycj=0, andaX=aY=0, then one finds that beam two can be guided without diffraction through
the relativistic effect if the power of the beam oneP1ù8s1+W1

2/W2
2d2, which can be less than 32 providedW1,W2.

The motion of the beam centroids can be obtained from varyingskxj ,kyjd and sXcj ,Ycjd. By varying skxj ,kyjd, it gives kxj

+dXcj /dt=0 andkyj+dYcj /dt=0. By varyingXcj, one obtains
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Similar equations hold in they direction. Equation(6) shows
that the beam centroids move like two particles with the
mass proportional to their powers. Momentum conservation

P1Ẋc1+P2Ẋc2=const can be straightly obtained from Eq.(6).
In a simplified case, assumingP1=P2=P and W1=W2

=W, the motion equations of the two beams become
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whereDXc=Xc1−Xc2 andDYc=Yc1−Yc2. As compared with
what was obtained in Ref.[7], new terms on the right-hand
side of Eq. (7) appear because of the introduction of the
ponderomotive force effect in Eq.(2). In the factor s3/4
+1/W2−d2/2W2d, the relativistic effect contributes only 1/4
and the ponderomotive force contributess1/2+1/W2

−d2/2W2d. This suggests that the relativistic effect always
contributes to the beam attraction, while the ponderomotive
force can play the role of beam attraction only for a trans-
verse separation between beam centersd,Î2+W2, beyond
which it plays the role of beam repulsion. Physically, the
ponderomotive repulsion is caused by the density increase in
space between two beams, which leads to a low refractive
index there. The beam repulsion can overcome the relativis-
tic beam attraction whend.Î2+3W2/2.

Meanwhile, Eq.(7) can describe oscillating motion of two
copropagating beams parallel to each other and spiraling mo-
tion for two beams with initial perpendicular momenta or at
some crossing angles. For the spiraling motion, their trans-
verse separation distanced can be constant. One obtains the
spiraling frequency

V =Î P

W4expS− d2

W2 DS3

4
+

1

W2 −
d2

2W2D
from Eq. (7). It is apparent that the spiraling solutions exist
while d,Î2+3W2/2. Beyond this upper limit, two beams
will depart from each other. This has been caused by the
repulsive effect of the ponderomotive force. Without ac-
counting for the ponderomotive force, it is also found that

there is an upper limit on the beam distance based on the
stability analysis of the spiraling motion[7], which is
d,Î2W. The physical meaning for the two limits is obvi-
ously different. Under the same conditions as in Ref.[7], we
find that the two beams rotate 180° after 552vp

−1, which is
very close to 540vp

−1 observed in their PIC simulation. It is
noted that, without including the ponderomotive effect, their
theory predicts a time of 586vp

−1 for a rotation of 180o. It
appears that due to the ponderomotive effect, the interaction
force between the two beams becomes stronger, leading to a
higher spiraling frequency.

When two beams propagate parallel to each other, we
cannot obtain the oscillating frequency as above and we
should solve Eq.(6) or Eq. (7) numerically, since the dis-
tanced is variable. To account for more general cases, we
solve the coupled equations(1)with the alternating-directing
implicit (ADI ) method[11]. A rectangular simulation box is
used in thex-y plane. The input beams are launched parallel
to each other along thez direction, and without initial per-
pendicular momenta. The transverse beam profiles are in
Gaussian focus withai =a0i exph−fsx−X0id2+y2g /W0i

2 j. In the
whole simulation processes, the energy centerkxli of the two
beams is tracked, wherekxli = I tot

−1e−`
` xuaisx,ydu2dxdy and

I tot=e−`
` uaisx,ydu2dxdy. The latter represents the total laser

energy[6].
Figure 1 illustrates the evolution of the two beams when

a01=a02=0.15, W01=W02=20Î2, and X01=−X02=12. Even
though the corresponding power for the single beam isP
=18, much less thanPc, the two beams are still trapped while
propagating. It suggests that the interaction of two beams
decreases the threshold power for self-focusing of the single
beam. This result can be deduced straight from Eq.(2), in
which the intensity superposition of the two beams is equiva-
lent to increasing the power of the single beam. As Fig. 1
shows, the width of the two beams slowly changes from
20Î2 to 10 intP f0,2000g. The beam amplitude increases to
0.39 in t=2000. The two beams attract, intersect, and sepa-
rate, like a damped oscillation with an increasing oscillation
frequency. Based on the assumption that both beams always
have constantW=20Î2, from Eq. (6) one obtains that the
two Gaussian beams have a nondamping and sinusoidal os-
cillation, as shown with the dashed line in Fig. 1(c). The
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oscillatory period isT=2244. The dotted line in Fig. 1(c)
shows theory prediction without the ponderomotive effect,
and the corresponding oscillatory period isT=3098. The
theory agrees better with the simulation when including the
ponderomotive effect. As mentioned above, the additive pon-
deromotive effect in Eq.(2) led to stronger interaction and
higher oscillatory frequency. Equation(6) also predicts that
oscillatory frequency will increase when the beam ampli-
tudes increase and their distance decreases. Fora1,2=0.39,
W1,2=10, andd=4.5, the oscillatory periodT=207, which is
consistent with the accelerated oscillation int
P f1750,2000g. It is found that the electron density is
slightly depressed, as shown in Fig. 1(d).

Figure 2 illustrates another beam evolution whena01
=a02=0.5, W01=W02=6.35Î2, andX01=−X02=5. The beam
width is almost constant in the whole process. The power of
one beam is 20.2. It is clear to see that the two beams have
an oscillatory motion. The oscillation period of the energy
center is about 514 in Fig. 2(c). The electron density also
shows a periodic structure, as shown in Fig. 2(d). Our ana-
lytical solution from Eq.(6) predicts an oscillation period of
T=349. This large difference is probably due to the weakly
relativistic approximation and the ideal Gaussian beam used
in the above variational approach.

The above examples are the cases where the two beams
have the same powers. Figure 3 shows the interaction be-
tween the two beams with initial parameters:a01=1, a02
=0.2,W01=W02=3.9Î2, X01=0, X02=−3. Note thatP2=1.2 is

much less thanP1=30.4. The large power means large mass
when one takes an analogy between the laser beams and
particles. It is expected that the beam with a small power will
twist along the beam with a large power. As shown in Fig. 3,
beam one is almost transversely immobile, but beam two
oscillates around beam one, with a period of about 200.
Meanwhile, beam two remains trapped without significant
spreading, even though its power is much lower than the
self-focusing threshold. This is also due to the focusing ef-
fect of beam one, as also discussed analytically following
Eq. (5).

In summary, the interaction of two copropagating laser
beams with crossed polarization in the underdense plasma
has been investigated analytically and numerically. It is
found analytically that the relativistic effect always plays the
role of beam attraction, while the ponderomotive force can
play the role of both the beam attraction and beam repulsion,
depending upon the beam diameters and their center separa-
tion. In certain conditions, the two beam centers oscillate
transversely around a propagation axis. In this case, the pon-
deromotive effect can lead to a higher oscillation frequency
than that accounting for the relativistic effect only. The in-
teraction between two beams decreases the threshold power
for self-focusing of the single beam. A strong self-trapping
beam can channel a weak one. Our numerical simulations are
consistent with the theoretical analysis in an earlier stage of
the beam evolution. In the later stage, the analytical solutions
depart from the numerical solutions because of a significant

FIG. 1. (Color online) Evolution of two
beams with initial parameters:a01=a02=0.15,
W01=W02=20Î2, X01=−X02=12. (a) ua1u2; (b)
ua2u2; (c) circles: energy center of the beams,
dashed line: theory including both the pondero-
motive and relativistic effects, dotted line: theory
only including the relativistic effect; and(d) elec-
tron densityn.

FIG. 2. (Color online) Evolution of two
beams with initial parameters:a01=a02=0.5,
W01=W02=6.35Î2, X01=−X02=5. (a) ua1u2, (b)
ua2u2, (c) energy center of the beams, and(d) elec-
tron densityn.
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change of the beam profile found in the numerical simula-
tions, which is difficult to take into account in the analytical
solutions.

It is noted that certain kinetic effects in the plasma, such
as electron acceleration and corresponding quasistatic mag-
netic generation, etc.[12], have been neglected. Usually,
these effects are significant in plasmas with moderate densi-
ties, but relatively weak in tenuous plasma[13]. Thus the
results described above should apply preferably in tenuous
plasma such asn0/nc,0.01. In addition, since we have ne-

glected the longitudinal profiles of laser beams, our results
should apply to the case when the durations of the laser
beams are much longer than a plasma oscillation period.
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ua2u2, (c) energy center of the beams, and(d) elec-
tron densityn.
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